教育经历:
2004.9-2009.6 中国科学院上海硅酸盐研究所 材料物理与化学 博士
2000.9-2004.7 武汉理工大学 材料科学与工程 学士
工作经历:
2019.12至今 威廉希尔 副教授
2009.7至2019.12 威廉希尔 讲师
2013.12-2014.12 美国布朗大学工程系 博士后
2011.11-2013.11 日本物质材料研究机构先进陶瓷研究室 博士后
2009.11-2011.10 日本东京工业大学物质科学创造专攻 博士后
☆ 发表论文:
1. Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu, N. P. Padture, “Room-Temperature Crystallization of Hybrid Perovskite Thin Films via Solvent-Solvent Extraction for High-Performance Solar Cells,” Journal of Materials Chemistry A, 3, 8178-8184, (2015).
2. Y. Zhuo, A. L. Vasiliev, W. Wu, M. Yang, S. Pang, K. Zhu, N. P. Padture, “Crystal Morphologies of Organolead Trihalide in Mesoscopic/Planar Perovskite Solar Cells," Journal of Physical Chemistry Letters, 6(12), 2292-2297, (2015).
3. W. W. Wu, Y. Sakka, M. Estili, T. Suzuki, T. Nishimura, G. J. Zhang, “Microstructure and High-Temperature Strength of Textured and Non-Textured ZrB2 Ceramics,” Science and Technology of Advanced Materials, 15, 0014202, (2014).
4. M. Estili, W. W. Wu, M. Khazaei, Y. Sakka, “Mechanically Reliable Thermoelectric (TE) Nanocomposites by Dispersing and Imbedding TE-Nanostructures Inside a Tetragonal ZrO2 Matrix: The Concept and Experimental Demonstration in Graphene Oxide-3YSZ System,” Science and Technology of Advanced Materials, 15, 014201, (2014).
5. W. W. Wu, Y. Sakka, T. Suzuki, G. J. Zhang, “Microstructure and Anisotropic Properties of Textured ZrB2 and ZrB2-MoSi2 Ceramics Prepared by Strong Magnetic Field Alignment,” International Journal of Applied Ceramic Technology, 11[2], 218-227, (2014).
6. W. W. Wu, W. L. Xiao, M. Estili, G. J. Zhang, Y. Sakka, “Microstructure and Mechanical Properties of ZrB2-SiC-BN Composites Fabricated by Reactive Hot Pressing and Reactive Spark Plasma Sintering,” Scripta Materialia 68[11], 889-892, (2013).
7. W. W. Wu, M. Estili, T. Nishimura, G. J. Zhang, Y. Sakka, “Machinable ZrB2-SiC-BN Composites Fabricated by Reactive Spark Plasma Sintering,” Materials Science and Engineering: A, 582, 41–46, (2013).
8. W. W. Wu, G. J. Zhang, Y. Sakka, “Nanocrystalline ZrB2 Powders Prepared by Mechanical Alloy”, Journal of Asian Ceramic Societies, 1[3], 304-307, (2013).
9. M. Estili, Y Sakka, W. W Wu, T. Nishimura, H. Yoshida, A. Kawasaki, “Perfect High-Temperature Plasticity Realized in Multiwalled Carbon Nanotube-Concentrated -Al2O3 Hybrid,” Journal of the American Ceramics Society, 96[6], 1904–1908, (2013).
10. S. K. Sun, G. J. Zhang, W. W. Wu, J. X. Liu, T. Suzuki, Y. Sakka, “Reactive Spark Plasma Sintering of ZrC and HfC Ceramics with Fine Microstructures,” Scripta Materialia, 69[2], 139–142, (2013).
11. W. W. Wu, G. J. Zhang, Y. M. Kan, Y. Sakka, "Synthesis, Microstructure and Mechanical Properties of Reactively Sintered ZrB2-SiC-ZrN Composites," Ceramics International, 39[6], 7273-72777, (2013).
12. Q. Zheng, N. A. Xu, H. Gu, G. J. Zhang, W. W. Wu, "Effect of ZrO2 Impurity on Promoting Reactive Sintering of ZrB2-SiC-ZrC Composites," International Journal of Materials Research, 104 [7], 675-679, (2013).
13. W. W. Wu, A. V. Gubarevich, H. Wada, O. Odawara, “NiO-Al Combustion Synthesis as Applied to Joining Al2O3 Ceramics,” International Journal of Self-Propagating High-Temperature Synthesis, 21[2], 146–150, (2012).
14. H. T. Liu, W. W. Wu, J. Zou, D. W. Ni, Y. M. Kan, G. J. Zhang, “In Situ Synthesis of ZrB2-MoSi2 Platelet Composites: Reactive Hot Pressing Process, Microstructure and Mechanical Properties,” Ceramics International, 38, 4751–4760, (2012).
15. W. W. Wu, A. V. Gubarevich, H. Wada, and O. Odawara, “Volume Combustion Synthesis of NiAl as Applied to Ceramics Joining”, International Journal of Self-Propagating High-Temperature Synthesis, 20 [2], 94-99, (2011).
16. H. T. Liu, J.Zou, D. W. Ni, W. W. Wu, Y. M. Kan, G. J. Zhang, “Textured and Platelet-Reinforced ZrB2-Based Ultra-High Temperature Ceramics,” Scripta Materials, 65[1], 37- 40, (2011).
17. W. W. Wu, G. J. Zhang, Y. M. Kan, P. L. Wang, “Combustion Synthesis of ZrB2-SiC Composite Powders Ignited in Air,” Materials Letters, 63, 1422-1424, (2009).
18. W. W. Wu, Z. Wang, G. J. Zhang, Y. M. Kan, P. L. Wang, “ZrB2-MoSi2 Composites Toughened by Elongated ZrB2 Grains via Reactive Hot Pressing,” Scripta Materials, 61[3], 316-319, (2009).
19. W. W. Wu, G. J. Zhang, Y. M. Kan, P. L. Wang, “Reactive Synthesis and Mechanical Properties of ZrB2-SiC-ZrC Composites,” Key Engineering Materials, 368-372, 1758-1760, (2008).
20. W. W. Wu, G. J. Zhang, Y. M. Kan, P. L. Wang, “Reactive Synthesis of ZrB2-SiC-ZrC Composites at 1600°C,” Journal of the American Ceramics Society, 91 [8], 2501-2508, (2008).
21. W. W. Wu, G. J. Zhang, Y. M. Kan, P. L. Wang, K. Vanmeensel, J. Vleugels, O. Van der Biest, “ZrB2-SiC Based Composites Synthesisd by Reactive Spark Plasma Sintering and Reactive Hot Pressing,” Scripta Materials, 57, 317-320, (2007).
22. W. W. Wu, G. J. Zhang, Y. M. Kan, P. L. Wang, “Reactive Synthesis of ZrB2/SiC Based Ultra High Temperature Ceramics and Powders,” Rare Metal Materials and Engineering, 36, 20-23, (2007).
23. W. W. Wu, G. J. Zhang, Y. M. Kan, P. L. Wang, “Reactive Hot Pressing of ZrB2-SiC-ZrC Ultra High Temperature ceramics at 1800°C,” Journal of the American Ceramics Society, 89 [9], 2967-2969, (2006).